Periodic Solutions for Nonautonomous Second-Order Systems with Bounded Nonlinearity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions of Second-order Nonautonomous Impulsive Differential Equations

The main purpose of this paper is to study the existence of periodic solutions of second order impulsive differential equations with superlinear nonlinear terms. Our result generalizes one of Paul H. Rabinowitz’s existence results of periodic solutions of second order ordinary differential equations to impulsive cases. Mountain Pass Lemma is applied in order to prove our main results. AMS Subje...

متن کامل

On periodic solutions of nonautonomous second order Hamiltonian systems with ( q , p ) - Laplacian

A new existence result is obtained for nonautonomous second order Hamiltonian systems with (q, p)-Laplacian by using the minimax methods.

متن کامل

Periodic solutions to second order nonautonomous differential systems with gyroscopic forces

Keywords: Second order differential systems Saddle point theorem Generalized Ahmad–Lazer–Paul type condition a b s t r a c t Existence of periodic solutions to second order differential systems with gyroscopic forces is considered via variational methods, where a generalized Ahmad–Lazer–Paul type condition is used. We do not impose the condition that the gyroscopic forces are small.

متن کامل

Existence of Infinitely Many Periodic Solutions for Second-order Nonautonomous Hamiltonian Systems

By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1999

ISSN: 0022-247X

DOI: 10.1006/jmaa.1998.6181